GOVERNMENT OF MADHYA PRADESH FOREST DEPARTMENT

TEAK

(TECTONA GRANDIS LINN.I

GROWTH TABLES

FOR
DIFFERENT ECOLOGICAL FOREST TYPES
IN
MADHYA PRADESH

BY
O.P. SAXENA
K.C. JOSHI \& G.P. DATE

$$
\begin{gathered}
\text { ISSUED BY } \\
\text { THE STATISTICAL BRANCH (1970-71) } \\
\text { Reprint issued by Extensiona nd Consultancy Division } \\
\text { OF } \\
\text { STATE FOREST RESEARCH INSTITUTE } \\
\text { JABALPUR (M.P.) } \\
1997
\end{gathered}
$$

CONTENTS

Particulars Poge
Preface $3-4$
Introduction 5-6
Chapter 1 Ecological types of Teak Forests in 7 Madhya Pradesh
Chapter 2 Source of data 8.10
Chapter 3 Computation of data 11-12
Chapter 4 The tables 13.22
Appendix 1 Grouping of various Teok Divisions in M.P. 23-24 by ecological types
Appendix 2 Average growth figures of the divisions in M.P. 25-26
Appendix 3 Girth/Diameter conversion lable for Teak 27
Appendix $4 \quad$ Statistics of growth of a mean Teak tree 28 classified by site qualities showing confidence limits for type-3B/Cle-slightly moist teak (other than Bastor)
Appendix $5 \quad$ Statistics of growth of a mean Teak tree 29 classified by site qualities showing confidence limits for type 5A/Clb-dry Teak forests

PREFACE

The meeting of VI Advisory Committee for research of State Forest Research Institute, Madhya Pradesh in 1969 emphasised the necessity for bringing out a publication for growth behaviour of Teak in Madhya Pradesh. Stem analysis on sufficient teak stems have been conducted and grawth data was obtained for about 36 forest divisions in M.P. by Working Plan Officers and State Forest Reseorch Institute from time to time. This coyered fairly vide range of ecological types and site qualifies. The information was scattered in piecemeals without striking the eyes of needy foresters. In this publication such scattered information has been used as the basic data and Teak growth tables, applicable to the different ecological forests types of M.P. have been made after statistical processing and proper grouping of the data. The procedure followed in the cimpilation and the way of presentation of these tables is of its own kind and is open to criticism is fully reolised. It is, however, believed that they will be more comprehensive as compared ta the either to available references specially for M.P.

The All India yield and stand tobles for plantotion Teak (1959) are mostly applicable to Teak stands of plantation origin. The tables, besides being restricted in range specially for M.P. have not been prepored after grouping similar climafic Zones.

This publication presents the standard etem timber plus stem small wood (u.b.) volumes by d.b.h. $\{$ a.b.) classes for different localities in M.P. by site qualities and by ecological types. The height variable has been conveniently avoided and volume can be read directly from d.b.h. (o.b.) measurements alone. The publication also presents the statistics of growih of d.b.h. (o.b.), height and volume of a mean Teak tree by age ciasses, by different site qualities and ecologicol types. The growth figures given in the table do not profess to give more than general averages but approach to confidence limits given in. Appendices 4 and 5, which hove been worked out at 0.05 probability.

For proper use of the fables, specially for $5 \mathrm{~A} / \mathrm{Cl}$-dry teak forest and $3 \mathrm{~B} / \mathrm{Clc}$-slightly moist teak forest (other than Bastar) it is necessary to follow the following steps.
(a) Determine ecological type of the locality where the tables have to be applied by consulting Appendix No. 1.
(b) Determine M.P. site quality class of the locality by top height/Age telationship.
(c) If the crop is more or less of uniform age, fell about 4 to 5 trees of dominant class, if the crop is irregular for each age group starting from 5 to 15 years, 16 to 25 years, 26 to 35 years and so on fell o similar number of trees from respective dominant age classes. Before felling mark in two opposite directions the height of $4^{\prime} \cdot 6^{\prime}$ from ground level with cross marks.
(d) Measure d.b.h. [o.b.), total height and determine total voiume (standard) stem timber plus stem small wood. All measurementa for volume should be underbark.
[e] Find out averages for each of the above parameters separately tor each age group
(f) Compare the ovetoge values determined under sub para [e| with the corresponding tobulated values given in Appendices 4 or 5 as the case may be if the values foll within corresponding confidence limits tables can be ditectly applied.

The tables may be of special interest to Working Plan and Working Scheme Otticers tor estimation of Statistics of growth, deciding ratations, felling cycles etc. The fables may be useful for the divisional stoft oloo for vol, estimation. However for full volume estimation ollowance for branch wood timber and branch smail wood (cit under bark) will have to be worked out and added to the figures.

```
Jabolpur
OP SAXENA
1st March 1971
```

OPSAXENA
K.C. JOSHI
G.P DATE

THE LIMITS OF Madhyo Pradesh State extend to $17^{-}-48$ to $76^{-}-52$ North and 74°. 2 to B4 -24 East, Intifude and langitude respectively. The cotal surface area of the stote is $4,65,690$ zq kms. $\{1,7\}, 210$ sq.miles), of which about 408kie. 1,79,520 sq.kms (66,000 sq-miles) it under forests The legol statuz of forest is as under..

1. Resorved forest - 82,791 sq.kms (30.438 日q.miles) which is about 46% of the total forest area.
2. Proiected forest - $96,827 \mathrm{sq} \mathrm{kms}$. $\{35.598$ sq.miles.) which is about 54% of the total forest area.

The broad composition of the tatal forest arsa by species is as under

1. Teok Forests $-43,520 \mathrm{sq} \mathrm{kms}$ 116,000 sc.miles)
2. Sal Foresis - 39,440 sq. kms . 114,500 sa-miles)
3. Mixed Forests - 96,658 sq.kms. $\{35,536$ sq.miles\}

However, on about 25% of the total recorded forest aroa, ie. on $44,880 \mathrm{sq} . \mathrm{kms}$. (16,500 sq-miles) either there are blanks and undel stocked potches of stem density below 0.4 or the forssts are inaccessible for explatation purposes.

Teak occurs over an extensive area in Madhyo Pradesh. Its extreme boundaries of occurrence are given below':

1. North - Tikaingarh Forest Division, $25^{\circ} .40$ North Latitude
2. South - East Bastar Foresl Division

$$
\begin{aligned}
& \text { (Konta Range) - } 170.45 \text { Narth } \\
& \text { Latitude. }
\end{aligned}
$$

3. East - Sidhi foreat Division, 82223 East Lorgitude
4. West - Thabua Foreat Division, 74:5 East Longitude.

It forms almost pure crops in the poor quality diz deciduons forest of peninsular India. It is indigenous to the major part of the State.

Reliable statistics about the growth trends for fixing up rotations, for ussessing the cubical contente of trees of different sizes and for prescribing annual yields ore essential for sound forest management. The resuits would be belter appreciated if the statistics is made available for the difforent ecological types by site quality classes.

Volume tables for Teak for the formet Central Provinces were compiled for the first time by Mr. VK. Maitland in 1924. With further modifications and some more additions volume toble for Teok for use it the former C.P. were compiled by Mr. Bakshi Sontram in 1942. These fables were of general type having no provisions tor different site quolities and ecological conditions. Data from Hoshangabad, Berul, Chhindwada, North Raipur and Balaghat Forest Divisions only were used by Mr. Bakshi Santram in compilation of his volume table. In case of Maitland's compilation the dota from only Hashangabad Forest Division were used. For these obvious reasons these tables have limited applicability to the forest of our

State. Re-organisation of States after the compilation of aforesaid tables is yet another factor which has limited the scope of their applicability in the present set up of M.P. State forests In recent years local volume tables for Teak for South Seoni and South Chhindwada forest divisions hove also been compiled, in the absence of any authentic records or tables suited to the varying requirements of the State, this publication has been brought out making use of existing stem analysia data.

The publication presents general growth trends and general volume tables for teak in Madhya Pradesh in greater detail. Tecak
forest as occuring in the State have been classified inta ecological types based on the revised survey of forest types of India [Champion and Seth]. In each ecological type the forests have been divided according to M.P. site quality classes. The growth rrends and volume table for Teak are compiled by site quality classes for every ecological type. The data was collected by different Working Plan Officers and also by the State Forest Research Institute from natural Teak forests only. The tables should thus be of general application for notural Teak forests throughout the State and in similar localities elsewhere:
$\Rightarrow 3=$

ECOLOGICAL TYPES OF TEAK FORESTS IN MADHYA PRADESH

As recommended in the 'Proceeding:' of All India Teak Study Tour and Symposium 1957-58 as well as adopted by Champion and Seth in their revised "Forest Types of India - 1964", the teak torests at Madhyo Fradesh have been classified according to the rair fall and temperature variotions. The latest working plons have also been
consulted and taken into account in dislinguishing the ecolingical types. The divisions falling it one range of annual and hoving more or less the same temperature cange have been grouped together to form one ecalype. On this basis following types hove teen separoled for M.P. Teak.

S.No.	Forest Types.	Range of average annual rainfall in mms.
1.	38/Clb-South Indian Moist Dediduous Forest Moist Teak Forest	1600 to 2500 mm (Approximately 61' to 100)
2.	38/Cle-South Indian Moist Deciduous	1200 to 1600 mm
	Forest-Slightly Moist Teak Forest	(Approximately 46 to 60)
3.	5A/Clb-Southern Tropical Dry Deciduous	900 to 1200 mms
	Forest-Dry Teck Forest.	(Approximately 36^{\prime} to 45° 1
4.	5A/Cla-Southern Tropical Dry Deciduous	Below 900 mms $\{35\}$.
	Forests - VERY DRY TEAK FOREST	

The nomes of forest divisions falling in each of the above ecological types are given in Appendix No. 1.

In order ta get more precise results and
their proper applicability the forest under each of the above type, whereever available were further differentiated by M.P site qualities as given under :

S.No,	Meight class at maturity in metres	M.P Teak site quality
1.	Ovat 27 Metres \{cver 90 feet)	1
2.	21 to 27 Metres (over 70 to 90 feef)	II
3.	'15 to 21 Metres lover 50 to 70 feet)	IiI
4.	12 to 15 Metres (over 40 to 50 feet)	IVa
5	9 to 12 Metres (over 30 to 40 feet)	Vb
6.	Below 9 Metres $(30$ feet and below)	V

The difference between an All india Toak quality and M.P. Teak quality is obout 3 metres only. It seems pecutiar to have separate norms for M.P. when the difference from All indig quality class is so less. Moreover reference age at which the top height is to be recorded was not mentioned by Mr, V.K Maitland when M.E quality
classes were defined. Such a difference only couses inconvenience and extra labour in conversions as all the standard tables are based on All India basis. In the present case most of the basic data were available occording to M.P. quality ciasses and the authors have to follow the suit in present publication.

SOURCE OF DATA

In compilation of this publication use of stem onalysis dato has been mode which was collected by the vorious Working Plan Officers and was mainly compiled, computed and analysed by the statistical branch of State Forest Research Institute trom time to time. In case of divisions for which stem analysis data and results were not available with the institute, growth figures have been sotled out fram the latest working plans.

For purposes of stem analysis mature trees of Teak were selecled keeping in view the instructians laid down under "The Silviculture Research Code Vol.3*. The selection was confined to high farest areas which were managed under uniform or selection systems. It may be argued that the trees selected for stam analysis hod zuffered suppressian at one stage ot the other
during their lite span. In a natural forest such conditions are obvious. The toral suppression could only be avoided in case of plontations for ests which hod untiergone regular tending operations including thinthing or in converted Teak stands worked under unitorm system provided fimely lending operations were carried out. Unfortunately old Took plantations of more than 20 years age are rarely available and that too in one of two divisions over very small area. Similar is the case with converted Teak stands where craps of obout 30 to 40 years of age are confined to anly a few divisions. Thus the results arrived at may be sofely used for natural high for ests.

The tallowing is the list of Divisions for which growth data has been taken form the results of stem analysis compiled by State Forest Research Institule, Jabalput.

S.No.	Name of the Division	M.P. quality class	No. of stems analysed
1.	Damah	III	26
2.	Damoh	IVo	22
3.	South Seani	II	62
4.	South Seoni	III	49
5.	North Seani	III	46
6.	Narsingpur	III	20
7.	Jabalpur	III	25
8.	Narth and South Mandla	11	9
9.	North and South Mandla	III	61
10.	Noith and South Mandio	Na	27
11.	Mandlo (Jagmondal reserved)	11	10
12.	Mandia (Jagmandal reserved)	III	13
13.	Mandla (Jagmandal reserved)	Va	6
14.	North Betul	11	60
15.	North Betul	111	42
16.	North Kbandwo	III	50
17.	Harda	Itt	50
18.	Hashangabad (excluding Bori reserved)	II	50
19.	Bori reserve [Hoshangabad)	II	15
20.	Bori reserve (Hoshangabad)	III	5

In case of following divisions growth data have been taken from respective working plans

S.No,	Name of the Division	M.P. quality class	No.of stems analysed
1.	Indore	III	10
2.	Indore	Pa	20
3	Indore	IVa	10
4.	Dowas	III	45
5.	Dewas	Va	19
6.	West Bhopal	Pa	50
7.	Guna	Na	20
8.	Guna	Vb	15
9.	Guna	v	15
10.	Narth,Raipur	II	15
11.	Narth and South Chhindwado	III	163
12.	West Bastar	II	20
13.	West Bastar	III	18
14.	East and West Bastar	II	15
15:	East and West Bastar	III	22
16.	Narth Balaghat	III	15

In chapter I the methods of allotting divisions to different ecological types have been discussed in detail. Grouping the total number of analysed stems from the aforesaid dota according to ecologital type
by site quality classes, the following is the break up of 1120 Teok trees in each type by gite qualifies, whinh is thus a taitly large number.

$3 \mathrm{~B} / \mathrm{Clc}$-slightly moist Teak (Bastar region)		$3 \mathrm{~B} / \mathrm{Cl} \text {-slightly }$ moist Teosk (other than Bastor-Region)			5A/Clb dry Teok				$3 \mathrm{~B} / \mathrm{Clb}$ Moist Teqk		
II	III	II	111	IVa	11	III	IVa	Vb	V	II	III
35	56	146	169	33	60	431	131	25	15	15	5

Total number of trees analysed 1120

Though according to average onmual roinfall data West Bostar and East Bastar forest divisions fall under the grouping alightly moist leak farests but on compilation of data it was observed that the height, diameter and volume figures against age classes for these two divisions for out-weighed the average growth figures for remaining forest divisions of slightly moist group. The grouping of these Bcstar divisions to remaining forest divisions of this group reaulted in undue enhancement of average growth figures. It was therefore
thought proper to make a sub group of these two forest divisions and separate them from remaining divisions of slightly maist Teak forests. The high growth figures in case of Bastar is altributed to a well spread of annual rainfall and deep fertile soils.

In stem analysis number of rings ie. age forms the basis of all measurements. Every stem is divided into convenient sections and every section into decades viz. by 10 yeara interval and growth data recorded accordingly. Thus even though only trees of
rotation age or over are selected for stem analysis, fate of growth is abtained for the whole life of such stem. It should, therefare not be misunderstood that trees of only above one age group of height class have been actually analysed, the data is net spread over to all ogen and height ciasses of the forest. On the contrary the dato is callected by every 3 metre height and 10 year age clanses which in any case is not less adequate than the sumple plot method of data collection for volume sable compilation.

A deviation from the neither to prevailent volume toble have however been injected in the present publication is 90 for
that the limits of standard sem timber and standard smell wood could not be separated. The volume of the main bole have been calculated right upto to tip of the tite 0 cm diametre o.b. $\}$ instead of upto 5 cm D.O.B. Timit. For want of data volume or branch timber and branch small woud could not be calculaled. As far ap the total volume of the main bale is concerned the present me thod would give more accurate figures than by sample plot method. In case of Teak there is not much of branch timber. Branch small wood can the assessed as a percentage of main bole volume depending uport locality.

CHAPTER - 3

COMPUTATION OF DATA

Final growth figures from stem analysis results and working pians were sorted out from the existing racards and these were taken as basic data. It is not mecessary to give full details of method of stem analysis of individual tree and how the stem analysis results were obtained for a particular tract of a forest division, it can hwwever be emphasised that the results of stem analysis have been arrived at by following prescribed slandard methods. The growth data for individual divisions has been purposely omitted to avoid volumnous publications, The growth data for individual
divisions can be seen in the working plans of the respective divizions.

The divisians were allotted to suitable ecological type. They were then groyped according to site quality elazses In this way growth dala for every ecological type and in every ecological type actording to M.P. site quality clasies were compiled taking age an independent variable and height, D.S.H. $(O, B$.) and volume as dependent variables. In this way in every eco-type by site quality classes the following number of divisions were allothed.

Ecological types	M.P.V	Teak site quality classes					Iolal
		Vb	IVa	III	11		
	No. of Divisions represented						
1. $3 \mathrm{~B} / \mathrm{Clc}$-slightly moist Teak [Bastar Region)	-	-	\checkmark	3	2		5
2. $3 \mathrm{~B} / \mathrm{Cl}$-slightly moist Teak \{other than Bastar Region)	-	-	2	4	6	-	12
3. 5A/Clb-Dry Teak	2	2	6	11	1	\checkmark	22
4. 5A/Cla-Very dry Teak	.	.	-	-	.	*	\sim
Total	2	2	8	18	9	-	39

The number of stem analysed in each division according to site quality closses have already been given earlier in Chapter2.

Except for the ecological type 5A/Cla and site quality I sufficient observations were-ovailable in each type.

Dáta for each site quality according to ecological types were averaged and mean values obtained for each dependent variable. Standard deviation was calculated for every dependent variable (Diameter, Height and vol.) for each decade in each ecological type and each site quality class. Each data was tested for its despersion from
respective mean by the formulo $M \pm 2$ where ' M ' is the mean of the group and ' ' the standard deviation from the mean. This showed that the probabilily that an individual observation will fall our sidg the range $M \neq 2$ approximately was $1: 19$ cases. It also proved that the grouping of different divisions in site quality classes was correct and the mean figures obtained could be used with 95% reliability which is quite high. None of the data was rejectable by this test except for the data of two Bastar Divisions which had to be separately grouped for the reasons stated under Chapter II. The mean figures for each of the variable under consideration io, D.B.H,
(O.B.). Height and volume by ages are given in Appendix No.2. From the mean figures thus obtained (Appendix.2) hamonised and baianced smooth curves were drawn for (1) Age/Height (2) Age/ D.3.H. (O.B.) and (3) Age/volume for each type and quality class. 30 curves were drawn in this way. From these smooth curves height D.B.H. (O.B.) and volumes corresponding to every 5 th year age were read and posted on reapective graph sheets, these figures are reproduced in table Nos. 5 to 7 which ore discussed under Chapter No. 4

From the posted figures on the oforesoid graph sheets D.B.H. (O.B./voiume and Height/Volume smooth curves were drawn taking age as common factor. From such sels of curves vol could be read from any D.B.H. $\{0 . B, 1$ Finally convenient diameler
ciasses by? cms interval were formed and volumes for the mid values of diametet claspes were read out fram D.B.H. IO.B. $/ /$ Vol, curves for separate types and qualities These figures are given in table No, 1 ts 3 which are also discussed in Chapler 4 .

In case of Beri reserve no other matching data were available from any oi the forest divisions of M.P. Statistics of growth sctes of D.B.H. (O.B.). Height and volume ore reproduced in table No. 8 from Jangles pian 1765-66, after converting the British units in 'o metric units To find out the volume in different approprigte D.B.H. (O.B.) classes the volume was plotted against corresponding D.B.H. (O.B.) foking oge factor as common. Smooth cuive was drawn and volume read out fram this curve at mid values of D.B.H. (O.B.) classes. The results are tabulated in table No. 4 .

TABLES AND CURVES

The tables and curves published in this records are as follows.

(i) Volume tables by diameters

Table No.	Description	Classification	Remarks	
1	2	3	4	
1.	Standard stem timber plus stem small wood volume under bark of a mean Teak tree in ecological type 38/Clc - slightly moist Teak (Bastar Region)	$2 \mathrm{cms} \text { D.B.H. }(\mathrm{O}, \mathrm{~B} .)$ and M.P. Teak site quabity classes III and II	1. Small wood has been measured upto the tip (O cm diameter of the treel	
2.	Standard stem timber plus stem small wood vol, under bark of a mean Teak tree in ecological type 3B/Clc - Slightly moist Teak (other than Bastar Region)	2 cms - D.B.H. (O.B.) and M.P. Teak site quality classes IVa , ili $\&$ II	2. Volume is read correct to 5 cdm only.	
3.	Stondord stem timber plus stem small wood volume under bark of o mean Teok tree in ecological type 5A/Clb Dry Teak forest	$\begin{aligned} & 2 \mathrm{cms} . \text { D.B.H. } \mid \mathrm{O} . \mathrm{B} .) \\ & \text { and } \mathrm{M} . \mathrm{P} \text { quality elosses } \\ & \mathrm{V}, \text { IVE, IVo, III \& II } \end{aligned}$		
4.	Standard stem timber plus stem small wood volume under bark of a mean Teok tree in Bori reserves of Hoshangabad Forest Division3B/Clb Maist Teak Forest	2 cms . D.B.H. (O.B.) and M.P. Teak quality classes \|	\& III combined.	*
(ii) Statistics of growth of Teak by ages				
5.	Statistics of growth for height, diameler and Vol of a mean Teak tree of ecological type 3B/Clc (Bastar Region)	5 years age and M.P Teak site quality classes III \& II	D.B.H. (O.B.P) height \& Volumes are dependent variables and age independent variable	
6.	Statistics of growth for height, diameler and Vol, of a mean Teak tree of ecological type $3 \mathrm{~B} / \mathrm{Cl}$ (other than Bastar Region)	5 years age and M.P Teak quality IVa, i\|I \& II		
7.	Statiztics of growth for height, diameter and Vol, of a mean Teak tree of Ecological type $-5 \mathrm{~A} / \mathrm{Clb}$	5 years age and M.P. Teak quality V, IVb, $\mathrm{Va}, \mathrm{III}$ \& II		
8.	Statiatics of growth for height, diameter and Vol, of a mean Teak tree in Bari reserve of Hoshangabod division ecological type 3B/Clb	5 years age and Bori M.P. II \& III combined quality Teak		

Fatile NE. 12 and 7 give the zandard stem timber volume olus standord smali wood velume under bork in the tand of a meen teak tree ay site quality closses in acnipdical types $33 / \mathrm{Cic} 3 \mathrm{~B} / \mathrm{ClC}$ and $5 \mathrm{~A} / \mathrm{Clb}$ tespecivaly, by 2 cms. D.S.H. (O.B.) classes. The volume had been compited by dividing the tres length into convanient and prevalent logs of 9 and 10 lengthas. Volume of these sections excepl the last one had been calculated by raking mid diameter of each \log and on the sectional area πr^{2}. The volume of the last section had been calculated by assuming that to be a cone with πr^{2} basal area and heizht of the \log as its length.

On a comparative study of table Nos. 1,2 \& 3 it would be seen that the difference in volume at a particular D.B. H. (OB.) is not very significant for 2 conseculive site quality classea. The eams may be the case for similar quality classes of different ecoiogicat type. Say for instance in toble No, 1, for the diameter class 30-32 cms . volume production for site quality clos: III is 500 cdites and for site quality II it is only 480 cams. Similarly for this very diameter class $\{30.32$ cims.) for 111 quality class the volume for ecological type $3 \mathrm{~B}, \mathrm{Cl}$ c (Bastat Region) is 500 cam3; ; for type 38/ Clc lother than Bostar Region) is 500 cdms.; for type $3 \mathrm{~B} / \mathrm{Cle}$ (other than Bastar Region) 480 cdms and for type $=5 \mathrm{~A} / \mathrm{Clb}$ the velume is 530 came as read from the toble Nos. 1,2 and 3 respectively. For easual reader this may sound obnormal that for a better quality class the volume is lesser that for a poorer quality class for the same D.B.H. [O.B.). Similarly this may go against his establizhed notion that for the same D. B.H. (O.B.) volume in higher rainfall area would be more than that for the lower raintall areas Toble No, $4,5 \& 6$ are given

10 weed out this talse motion. In case of loak due to divtinct annual rings, estimation of age of a tree or a crop is an easy iob. The tobles $4,5 \& 6$ give the D.B.H. (O.B.). height and volume production by mean Teak tree at the age interval of 5 year: for ecological type $3 \mathrm{~B} / \mathrm{Cl}$ (Bustar), 3 B / Cl (fother than Bastar) and $5 \mathrm{~A} / \mathrm{Clb}$ respectively. In each ecological type the growth figutes are given by site quality classes for which data was available.

Coming to the example cited in previous para that is to the volume production of D.B.H. (O.B.) class 30-32 cms. for different site qualities and ecological types the fallowing clarification is given. From table Na, V it would be seen that D.B.H, (O.B.) $30-32 \mathrm{cms}$ class is attained in about 55 years, in case of sita quality III and in about 38 years in case of site quality II for $3 \mathrm{~B} / \mathrm{Cl}$ e for Bostar Region. At these ages the height attained by the mean tree was $\$ 8.5$ metres and 18.0 metres respectively. The lower age (38 years) and hence lower height (18.0 metres) resulted in lower volume production $\{480$ com.) in II quality in comparision to I! quality where the age taken was 55 yeors: height attained 18.5 metres and volume produced 500 cdm . for the same D.B.H. cluss $(30-32 \mathrm{~cm} s)$ for $3 \mathrm{~B} / \mathrm{Clc}$ [Bastor Regian) type. Similar height and, age variations are for ather types. For any other D.B.H. closs sume reasons ore applicable.

Since in the field the girth at bih. is accurately measurable in comparison to diameter at $\mathrm{B}, \mathrm{H}_{1}$, a canversion table for girth to diameter is given in Appendix No.3. With the help of this conversion table girth measured in the field can bo converted into corresponding diameter and the volume read diesctly from the table for that diameter class

TABLE No. 1

Type $-3 \mathrm{~B} / \mathrm{Cl}$ c. South Indian moist deciduous forest/Slightly Moist Teak Forest. (Bastar Region)

Volume (Stondard stem timber plus stem sinall wood) in the round (πr^{2}) under bark - by diameter classes (D.B.H. O.B.) and localily qualities to the nearest 5 cdim , for a mean tree.

Diameler class
Locality quality class (M.P. Teok quality classes. III

II
D.B.H. over bark in cms .

VOLUME \mathbb{N} cdms.

0.2		
2.4	5	5
4.6	10	10
6.8	20	20
8.10	30	30
10.12	40	40
$12-14$	60	60
14.16	80	80
16.18	105	100
18.20	140	130
20.22	180	160
22.24	220	200
24.26	280	245
26.28	340	300
28.30	410	380
30.32	500	480
32.34	590	600
34.36	690	710
36.38	790	860
38.40	910	1000
40.42	1040	1100
42.44	1145	1190
4.46	1205	1270
$46-48$	1240	1350
48.50	1265	1420
50.52		1500

TABLE No. 2

Type - 3B/Clc ' c. South Indian moist deciduous forest/Slightly Moist Teak Forest. |other thanBastar Region)

Volume (Standard stem timber plus stem small wood) in the round $\left(\pi r^{2}\right)$ under bark - by diameter classes (D.B.H. O.B.) and locality qualities to the nearest 5 cdm . for a mean tree.

Diameler class	Locality quality IVa	class	III

VOLUME IN dms.

0.2		-	-
2.4	-	-	-
$4 \cdot 6$	5	5	5
6.8	10	10	15
8.10	25	25	25
10.12	30	40	50
12.14	50	55	70
14-16	65	75	100
16.18	90	95	135
18.20	110	120	165
20.22	140	160	205
22.24	170	200	250
24-26	200	245	310
26.28	250	300	360
28.30	325	400	425
30-32	410	480	500
32-34	480	580	600
34.36		660	700
36.38		730	805
38.40		800	910
40-42		845	1020
42-44			1170
44.46			1260
46.48			1330
48.50			1395

TABLE No. 3

Type - 5A/Clc(b) - Southern tropical dry deciduous forest/Dry Teak Forest
Volume \{Standard stem timber plus stem small wood) in the round $\left\{\pi r^{2}\right\}$ under bark - by diameter classes (D.8.H. O.B.) and locality qualities to the nearest 5 cdm. for a mean tree.

Diameter class
Locality qualityclass
(M.P. Teak quality classes.
D.B.H. over bar'
in cms.
VOLUME IN cdms.

0.2	-	-	-	-	\bullet
2-4	-	-	-	-	-
4.6	5	5	5	5	5
6.8	10	10	10	10	10
8.10	20	25	25	25	25
10.12	30	35	35	40	35
12.14	45	50	50	55	50
14.16	60	65	70	80	75
16.18	75	85	90	100	100
18-20	95	105	125	135	135
20-22		140	170	170	170
22-24		190	215	220	215
24.26		220	250	265	260
26-28			290	340	335
28-30			320	440	410
30-32				530	490
32-34				620	590
34-36				700	680
36-38				800	800
38-40				870	900
40.42					1030
42-44					1130
44.46					1200
46-48					1250
48-50					1280

TABLE No. 4

Standard stem timber plus small wood in the round πr^{2} under bark by diameter classes (D.B.H.O.8.) and M.P qualifies II \& III combined to the nearest 5 edm . for a mean tree.

Type - 3B/Clb-Maist Teak Forest

BORI RESERVE

D.B.H. (O.B.) class in cms .

$0-2$		$46-48$	1300
$2-4$	5	$48-50$	1490
$4-6$	10	$50-52$	1620
$6-8$	20	$52-54$	1810
$8-10$	30	$54-56$	1970
$10-12$	50	$56-58$	2150
$12-14$	60	$58-60$	2370
$14-16$	80	$60-62$	2570
$16-18$	110	$62-64$	2710
$18-20$	140	$64-66$	2850
$20-22$	180	$66-68$	3160
$22-24$	215	$68-70$	3410
$24-26$	260	$70-72$	3600
$26-28$	325	$72-74$	3820
$28-30$	400	$74-76$	4120
$30-32$	465	$76-78$	4430
$32-34$	535	$78-80$	4740
34.36	640	$80-82$	4820
$36-38$	750	$82-84$	4970
$38-40$	850	$84-86$	5090
$40-42$	990	$86-88$	5180
$42-44$	1150	$88-90$	5250
$44-46$	1150		
$46-48$			

TABLE No. 5

Typ6 - 38/Clc South Indian maist deciduous forest/slightly moist - Teak forest |Bostar Region) Statisfics of grawth of a mean teak (Tectona grandiof tree dassitied by site qualities.

| | | M.P quality III | | M.P quality II |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE No. 6

Type - $3 \mathrm{~B} / \mathrm{Clc}$. South Indian moist deciduous foreat/slightly moist Teak forest (other than Bastar Region). Statistics of growth of a mean Teak (Tectona grandis) tree classified by site qualities.

M.P. quality IVa				M.P. quality III			M.P. quality II		
Ago in years	$\begin{aligned} & \text { D.B.H. } \\ & \text { (O.B.) } \\ & \text { in } \mathrm{cms} \text {. } \end{aligned}$	Height in metres	Volume in cdm (Stem timber plus stem small wood)	$\begin{aligned} & \text { D.B.H. } \\ & \left(\mathrm{O} . \mathrm{B}_{1}\right) \\ & \text { in } \mathrm{cms} . \end{aligned}$	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { metres } \end{aligned}$	Volume in cdm (Stem timber plus stem small wood)	$\begin{aligned} & D . B_{1} \cdot{ }_{2} \\ & \left(O . B_{1}\right) \\ & \text { in } \mathrm{cms} \text {. } \end{aligned}$	Height in metres	Volume in cdm (Stem timber olus stem small wood)
10	5.0	3.3	5	6.0	3.4	5	6.5	4.6	15
15	8.0	5.2	20	9.0	5.1	10	9.5	6.7	35
20	11.5	7.0	40	12.0	6.8	30	13.0	8.6	65
25	14.5	8.4	60	15.0	8.4	50	16.0	10.4	115
30	17.0	9.7	95	18.0	9.8	90	19.5	12.0	175
35	20.0	10.6	125	20.5	11.2	135	22.0	13.4	245
40	22.0	11.4	160	23.0	12.5	185	25.5	14.7	325
45	24.0	12.1	195	25.0	13.6	250	28.0	16.0	415
50	26.0	12.7	230	27.0	14.7	320	31.0	17.2	500
55	28.0	13.2	280	29.0	15.7	400	33.0	18.3	620
60	29.0	13.6	325	31.0	16.6	480	36.0	19.4	730
65	30.5	13.9	370	33.0	17.4	550	38.0	20.4	850
70	30.0	14.2	415	34.0	18.2	610	40.0	21.3	950
75	32.0	14.4	450	35.5	18.8	660	42.0	22.0	1070
80	33.0	14.5	480	36.5	19.2	700	44.0	22.8	1180
85	33.0	14.6	500	37.0	19.8	730	45.0	23.5	1250
90	33.5	14.6	515	38.0	20.2	760	46.5	24.2	1300
95	34.0	14.7	520	38.5	20.6	780	47.5	24.7	1340
100	34.0	14.7	525	38.5	20.8	800	48.5	25.2	1370
105		.	-	39.0	21.0	815	49.0	25.6	1395
110	$=$	-	-	39.0	21.0	825	49.5	25.8	1410
115	-	.	.	-	=	.	50.0	26.0	1425
120	\%	-	-			-	50.0	26.0	1435

TABLE No. 7

Type - 5A/Clb - Southern Tropical dry deciduous forest/Dry teak forest Statistics of growth of a mean tak |Tectana grandis) tree clossified by site qualities
M.P quality V
M.P. quality IVb
M.P quality $\mathrm{IVa}_{\mathrm{o}}$
M.P. quality III
M.P. quality II

Age in year	$\begin{aligned} & \text { D.B.H } \\ & 10.8 .1 \\ & \mathrm{cs} \text { in } \mathrm{cms} . \end{aligned}$	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { metres } \end{aligned}$	Volume in cdm	$\begin{aligned} & \text { D.B.H. } \\ & \text { (O.B.) } \\ & \text { in } \mathrm{cms} . \end{aligned}$	Height in metres	Volume in cdm	$\begin{aligned} & \text { O.B.H } \\ & \text { (O.B.) } \\ & \text { in } \mathrm{cms} . \end{aligned}$	$\begin{gathered} \text { Heght } \\ \text { in } \\ \text { metres } \end{gathered}$	Volume in cdm	$\begin{aligned} & \text { DB.H. } \\ & \text { (OB.) } \\ & \text { in cms. } \end{aligned}$	Height in metres	$\begin{aligned} & \text { Volume } \\ & \text { in } \\ & \text { cdmm } \end{aligned}$	$\begin{gathered} \text { a D.B.H } \\ (O . B) \\ \text { in cms. } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { meltes } \end{aligned}$	Volume in cdm
10	1.5	1.0	-	3.0	2.5	5	5.0	3.1	5	5.0	3.0	5	6.0	3.4	5
15	3.0	1.7	-	5.5	3.7	10	8.0	4.6	20	8.0	5.0	25	9.0	5.2	20
20	4.5	2.4	5	8.0	5.2	20	10.0	6.1	30	10.5	6.9	40	12.0	7.4	35
25	6.0	3.5	5	10.5	6.5	35	12.5	7.5	50	13.5	8.8	65	15.0	9.2	65
30	8.0	4.5	10	13.0	7.8	50	14.5	8.9	65	16.5	10.5	95	18.0	10.6	115
35	10.5	5.6	20	16.0	9.0	80	17.0	10.1	95	19.5	12.1	140	21.0	12.4	180
40	12.0	6.6	40	18.0	10.0	105	18.5	11.2	120	22.0	13.7	190	24.0	14.0	250
45	14.0	7.4	50	20.0	10.8	135	20.5	12.2	150	24.0	15.0	250	26.5	15.4	325
50	16.0	8.0	$70 \quad 2$	21.5	11.5	160	22.0	13.0	190	26.0	16.4	305	29.0.	17.0	410
55	17.0	8.6	80	23.0	12.1	180	23.0	13.6	210	28.0	17.4	370	31.0	18.2	510
60	18.5	9.0	90	23.5	12.6	200	24.0	14.0	230	29.5	18.4	435	33.5	19.7	610
65	20.0	9.4	100	24.0	13.0	215	25.0	14.4	255	31.0	19.2	510	36.0	21.0	700
70	20.5	9.7	115	24.5	13.2	220	26.0	14.8	270	32.5	20.0	580	37.0	22.0	800
75	21.0	10.0	120	25.0	13.4	225	27.0	15.0	290	34.0	20.8	650	39.0	23.0	890
80	21.0	10.0	1302	25.5	13.6	230	28.0	15.3	300	35.0	21.5	710	40.0	24.0	990
85							28.5	15.4	310	36.0	22.0	770	42.0	24.6	1060
90							29.0	15.4	325	37.0	22.5	810	43.0	25.4	1120
95										38.0	22.8	825	43.5	25.8	1150
100										38.5	23.2	840	44.0	26.2	1170
105										39.0	23.4	845	44.5	26.4	1190
110										39.0	23.4	850	45.0	26.6	1200

For confidence limits refer to Appendix No. 5

TABLE No. 8
Type $3 \mathrm{~B} / \mathrm{Clb}$. South Indian moist deciduous forest/Moist Teak Forest
Statistics of growth of a mean Teck (Tectona grandis) tree dassified by M.P. II \& ill combined site qualities

Age in yoars	Height in melres	Bori M.P If \& III combined qualities	
		D.B.H. (O.B.) in cms	Volume in cdm. (Slem timber plus stem small wood)
10	2.4 .	9.1	17
15	3.6	13.5	40
20	5.5	17.0	78
25	72	21.0	130
30	9.1	24.6	211
35	11.1	29.0	310
40	13.4	32.2	437
45	15.2	36.0	570
50	17.1	39.9	760
55	18.6	44.0	1000
60	20.1	46.7	1288
65	21.8	50.0	1540
70	23.5	52.8	1764
75	24,7	57.0	2100
80	26.2	59.9	2431
85	27.4	64.0	2790
90	28.6	66.3	3106
95	29.8	70.0	3480
100	31.1	72.9	3822
105	32.0	76.0	4330
110	32.9	79.2	4629
115	33.8	82.0	5060
120	34.4	85.3	5405

APPENDIX No. 1

Grouping of various teak divisions in Madhyo Pradesh by Ecological types.
Type $-38 / \mathrm{Clb}$ Moist Teak Forests (Bori Reserve) range of averoge annual rainfall 1600 to 2500 mm

S.N.	Name of Division	Ecological type
1.	Bori Reserve [Hoshangabad division)	3B/Clb-Moist Teak Forest
$\begin{aligned} & 2 . \\ & 1600 \end{aligned}$	Type-38/Clc-Slightly Moist Teak Forest Range of average annual rainfall (1200 to	
S.No.	Name of Division	Ecological type
Group A - Bastar Region		
1.	West Bastar [Bostar region)	$3 \mathrm{~B} / \mathrm{Clc}$-Slightly moist teak forest (Bastar region)
2.	East Bastar	-do-
3.	North Bastor	-do-
4.	South Bastar	-do-
Group B-other than Bastar Region		
5.	South Seoni .	38/Cle-Slightly moist teak forest other than Bastar
6.	South Mandla	-do-
7.	South Balaghat	-do-
8.	North Balaghat	-do-
9.	Kanker	-do-
10.	Hoshangabad (Except Bori)	-do-
11.	North Raipur	-do-

3. Type-5A/Clb. Dry Teak Forest Range of averoge annual rainfall (900 to 1200 mm)

S.No.	Name of Division	Ecological type
1.	Harda	5A/Clb-Dry Teak Forest
2.	North Khandwa	-do-
3.	Indore (Except Mandsaur Sub. Division]	-do-
4.	Dewas	-do-
5.	Dhar	-do-
6.	Guna (port)	-do-
7.	North Seoni	-do-
8.	Damah	do

S.No.	Name of Division	Ecological type
9.	Jobalpur	Sa/clb-Dry Tenk Forest
10.	Narsinghpur	do
11.	East Bhopal	do
12.	West Bhopal	do
13.	Saugar	do
14.	South Chhindwara	do
15.	East Chhindwaro	do
16.	West Chhindwara	do
17.	North Durg	do
18.	South Durg	do-.
19.	North Betul	do-
20.	West Betul	do-
21.	South Betul	do
22	East \& Weat Sidhi	do
23.	Umaria	do-

4. Type-5A/Cla Very dry Teak Forest Range of Average annual toinfall (Below 900 mm .)

S.No.	Name of Division	Ecological type
1.	East Khargone	SA/Cla-very dry Teak Forest
2.	Jhabua (except Kathiwara range)	do
3.	South Khandwa	da
4.	Shivpuri	do
5.	Guna $\{$ Part	do
6.	Tikamgarh	do

$$
\Rightarrow \gg
$$

APPENDIX No. 2

Average growth figures of the divisions in M.P.
Height
D.B.H. (O.B.)
and volume

10	20	30	40	50	60	70	80	90	100
	38/clb-Slightly moist			Teak	forest	Bostar	Kigon)	Quality	
6.2	11.3	15.2	18.6	21.8	24.2	25.9	27.2	28.2	28.8
1	18.4	26.6	33.4	36.3	47.0	45.7	48.0	50.4	52.2
21	83	257	572	828	1004	1169	1321	1455	158

3B/Clb slightly moist leak forest, (Blastar Region) M.P. quality)
Height in metres
D.B.H. (O.B.) in cms

Volume in cdm.

4.2	8.6	12.3	15.4	17.8	19.7	21.3	22.7	23.5	23.9
6.1	12.2	18.1	33.4	29.0	34.0	38.5	42.3	44.9	
14	43	142	228	409	631	886	11.49	1400	1568

$3 \mathrm{~B} / \mathrm{Cl}$ slightly moist Teak forest (other than Bastar) M.P. quality II
Height in metres
O.B.H. 10.8 . in cms

Volume in cam.

3.6	8.3	12.1	14.8	17.3	19.5	21.3	22.9	24.1	25.0
5.6	12.7	19.5	25.9	31.4	36.4	40.4	43.9	46.8	48.8
12	51	142	292	500	724	962	1192	1411	1569

Height in metres
D.B.H. $\mid O . B$) in cms .

Volume in cdm.
$38 / \mathrm{Cl}$ slightly moist Teak forest (other than Bastar) M.P. quality III

3.4	7.1	9.9	12.5	14.7	16.5	18.1	19.3	20.3	20.8
4.3	10.5	17.4	22.9	27.4	31.1	34.0	36.1	37.7	38.7
4	29	106	213	341	470	590	699	787	835

$38 / \mathrm{Clc}$ slightly moist teak forest (other than Bastar) M.P. quality IVa

Height in matres	4.3	7.3	0.7	11.4	12.7	13.6	14.1	14.6	14.7	14.7
D.B.H. (0.8) in cms	4.9	11.3	18.0	23.2	26.4	29.7	31.6	32.8	33.6	33.9
Volume in cdm.	9	40	111	200	289	378	448	501	510	523

$5 \mathrm{~A} / \mathrm{Clb}-$ Dry teak forest M.P. quality II

Height in metres	3.1	6.7	10.6	14.1	17.0	19.5	21.9	24.0	25.8	(27.0)		
D.B.H. (O.B.) in cms.	5.1	11.6	18.5	24.3	29.5	33.7	37.2	40.4	43.0	45.0		
Volume in cdm.	-	36	116	252	430	622	800	976	1131	1256		
$5 \mathrm{~A} / \mathrm{Clb}$ - Dry teak forest M.P. quality III												
Height in metres	3.5	7.6	11.3	14.3	16.5	18.4	20.0	21.4	22.5	23.7		
D.B.H. (O.B.) in cms.	4.4	10.3	16.4	21.6	26.0	29.5	32.4	34.9	38.0	39.5		
Volume in cdm.	7	31	91	191	306	428	543	652	808	872		
$5 \mathrm{~A} / \mathrm{Clb}$ - Dry teak forest M.P quality Va												
Height in metres	3.9	6.7	9.5	11.6	13.0	14.0	14.7	15.3				
D.B.H. $(\mathrm{O} .8$.$\} in \mathrm{cms}$.	4.7	11.1	14.7	19.3	22.1	24.3	26.1	28.0				
Volume in cdm,	6	33	81	138	187	231	275	310				
5A/CIb Dry teak forest M.P. quality IVb												
Height in metres	2.9	6.4	9.1	10.8	12.0	12.8	13.4	15.2				
D.B.H. (O.B.) in cms.	4.8	11.4	15.8	18.8	21.1	23.3	25.0	-				
Volume in cdm.	4	31	68	108	150	191	231	-				
$5 \mathrm{~A} / \mathrm{Clb}$ - Dry teak forest M.P. quality V												
Height in metres	-	1.9	4.6	6.7	8.2	9.1	9.9	10.3				
D.B.H. (O.B.) in cms .	-	2.5	8.4	12.8	15.9	18.4	20.2	21.3				
Volume in cdm.	*	3	17	39	68	96	120	139				
38/Clb - Moist teak forest M.P. qualities II \& III combined												
Height in metres	2.4	5.5	9.1	13.4	17.1	20.1	23.5	26.2	28.6	31.1	32.9	34.4
D.B.H. (O.B.) in cms.	9.1	17.0	24.6	32.2	39.9	46.7	52.8	59.9	66.3	72.9	79.2	85.3
Volume in cdm.	17	78	211	437	760	1288	1764	2431	3106	3822	4629	5405

APPENDIX No. 3

Girth/Diameter conversion table for teak (Tectona grandis) conversion factor d/g 0.316

Girth in cms.	0 Diam.in cms.	1 Diam,in cms.	2 Diam in cms .	3 Diam.in crns.	4 Diam.in cms.	5 Diam.in cms.	6 Diam,in cms.	7 Diam.in cms.	$\begin{gathered} 8 \\ \text { Diam.in } \\ \text { cms. } \end{gathered}$	9 Diom, in cms.
0	0	0.3	0.6	0.9	1.3	1.6	1.9	2.2	2.5	2.9
10	3.2	3.5	3.8	4.1	4.4	4.7	5.1	5.4	5.7	6.0
20	6.3	6.6	7.0	7.3	7.6	7.9	8.2	8.5	8.8	9.2
30	9.5	9.8	10.1	10.4	10.7	11.1	11.4	11.7	12.0	12.3
40	12.6	13.0	13.3	13.6	13.9	14.2	14.5	14.9	15.2	15.5
50	15.8	16.1	16.4	16.7	17.1	17.4	17.7	18.0	18.3	18.6
60	19.0	19.3	19.6	19.9	20.2	20.5	20.9	21.2	21.5	21.8
70	22.1	22.4	22.8	23.1	23.4	23.7	24.0	24.3	24.6	25.0
80	25.3	25.6	26.0	26.2	26.5	26.9	27.2	27.5	27.8	28.1
90	28.4	28.8	29.1	29.4	29.7	30.0	30.3	30.7	31.0	31.3

NOTE - The obove table gives girth from 0 cm to 99 cms and its corresponding diameters. For girth 100 cms . and above the corresponding diameter can be obtained by multiplying the 2 digit readings by 10 .
Example - 1. Ta find out the diameter corresponding 52 cms . girth, read against line of 50 , figure of column headed 2 . This will give 16.4 cms . diameter.
2. To find out the diameter corresponding 125 cms girth, find out corresponding diameter (1) for 120 ie. figures for 12 , multiply by 10 (ii) add to it corresponding diameter for 5 cms girth, this comes $=3.8 \times 10+$ $1.6=39.6 \mathrm{cms}$. diameler.

APPENDIX No. 4

Type 3B/Cle - South Indian moist deciduous forest/slightly moist teak forest (ather than Bastar Regian) Statistics of growth of a mean teak (Tectona grandis) tree classified by site qualities showing confidence limits (Reference to table no.6)
M.P. quality IVa
M.P. quality III

$\begin{aligned} & \text { Age } \\ & \text { in } \\ & \text { years } \end{aligned}$	D.B.H (O.B.) in cms	$\begin{aligned} & \text { Confidence } \\ & \text { limits } \\ & \text { in } \mathrm{cms} \text {. } \end{aligned}$	Ht in metres	Confidence limits in metres	Vol. in cdm.	Confidence limits in cdm.	D.B. (OB) in cms	$\begin{gathered} \text { Confidence } \\ \text { limits } \\ \text { in cmas. } \end{gathered}$	Ht in metres	Contidence limits in metres	Vol. in cdm.	Confidence limits in codm.
10	5.0	3.7	3.3	2.3-4.3	5	-	6.0	4.8	3.4	2.0.4.8	5	
20	11.5	5.17	7.0	5,6.8.4	40	10.70	12.0	7.8-16.2	6.8	4.2-9.4	30	10.50
30	17.0	12.4-21:6	9.7	7.5-11.7	95	70.120	18.0	14.0-22.0	9.8	7.2-12.4	90	40.140
40	22.0	19.8-24.2	11.4	8.6.14.2	160	116.204	23.0	18.8-27.2	12.5	9.7-15.3	185	105.265
50	26.0	23.4.28.6	12.7	10.5-14.9	230	212.248	27.0	23.4-30.6	14.7	11.7.17.7	320	202.438
60	29.0	25.4-32.6	13.6	12.0-15.2	325	205-445	31.0	28.2-33.8	16.6	13.6-19.6	480	360-600
70	31.0	25.2-33.8	14.2	13.2-15.2	415	229.601	34.0	31.6-36.4	18.2	15.2-21.2	610	470.750
80	$33 . \mathrm{D}$	$27.6 \cdot 38.4$	14.5	14.1-14.0	480	212.748	36.5	33.7-39.3	19.2	16.6-21.8	700	546.854
90	33.5	27.9-39.1	14.6	14.2-15.0	515	261-769	38.0	34.4-41.6	20.2	18:0-22.4	760	606.914
100	34.0	29.6-39.4	14.7	14.3-15.1	525	275.775	38.5	34.5-42.5	20.8	19.2-22.4	800	686.914
110							39.0	-	21.0		825	-

Note :- For other quality classes confidence limits could not be worked out for want of adequate basic data.

APPENDIX No. 5

Type - 5A/Clb - Southern tropical dry deciduous forest/dry teak farest
Statistics of growth of a mean feak (Tectona grandis) tree classified by site qualifies showing confidence limits (reference to table no.7)
M.P quality IVa
M.P. quality III

Age in years	$\begin{aligned} & \text { D.B.H } \\ & \text { (O.B. } \\ & \text { in } \mathrm{cms} \end{aligned}$	$\begin{aligned} & \text { Confidence } \\ & \text { limits } \\ & \text { in } \mathrm{cms} . \end{aligned}$	Hf . in metres	Confidence limits in metres	Vol in cdm.	Confidence limits in cdm.	D.B.H (OB.) in crns	$\begin{aligned} & \text { Confidence } \\ & \text { limits } \\ & \text { in } \mathrm{cms} \text {. } \end{aligned}$	H_{1} in metres	$\begin{aligned} & \text { Confidence } \\ & \text { limits } \\ & \text { in metres } \end{aligned}$	Vol in cdm.	Confidence limits in cdm.
10	5.0	2.4-7.6	3.1	2.3-3.9	5	0.10	5.0	2.6-7.4	3.0	1.0.5.0	5	0.20
20	10.0	5.0.15.0	6.1	3.5-8.7	30	10.50	10.5	6.9 .14 .1	6.9	4.3-9.5	40	20.60
30	14.5	$9.5 \cdot 19.5$	8.9	5.7-12.1	65	25.105	16.5	13.7-19.3	10.5	7.7-14.3	95	65.125
40	18.5	12.5-24.5	11.2	8.6-13.8	120	40.200	22.0	18.6.25.4	13.7	9,7-17.7	190	90.290
50	22.0	16.0-28.0	13.0	$10.6-15.4$	190	90.290	26.0	22.2-29.8	16.4	12.4-20.4	. 305	141.459
60	24.0	18.2-29.8	14.0	10.6-17.4	230	$130-330$	29.5	24.9-34.1	18.4	16.0.20.8	435	241.629
70	26.0	20.0-32.0	14.8	10.8-18.8	270	110.430	32.5	27.5-37.5	20.0	$16.6-23.4$	580	$340-820$
80	28.0	22.2-33.8	15.3	11.3-19.3	300	100-500	35.0	$30.0-40.0$	21.5	18.1-24.9	710	420.1000
90	29.0	-	15.4	-	325		37.0	$33.0-41.0$	22.5	19.3-25.7	810	518-1102
100							38.5	$34.5 \cdot 42.5$	23.2	20.4-26.0	840	540.1140
110							39.0	-	${ }^{2} 23.4$	-	850	-

Note : For other quality classes confidence limits cauld not be worked out for want of adequate basic data

